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Strong Convergence Theorem for Generalized
Mixed Equilibrium Problems and Bregman
Nonexpansive Mapping in Banach Spaces

VAHID DARVISH

ABSTRACT. In this paper, we study an iterative method for a common
fixed point of a Bregman strongly nonexpansive mapping in the frame
work of reflexive real Banach spaces. Moreover, we prove the strong
convergence theorem for finding common fixed points with the solutions
of a generalized mixed equilibrium problem.

1. INTRODUCTION

Let E be a real reflexive Banach space and C' a nonempty, closed and
convex subset of £ and E* be the dual space of E. Let © be a bifunction of
C x C into R, where R is the set of real numbers, ¥ : C' — E* be a nonlinear
mapping and ¢ : C' = R be a real valued function. The generalized mized
equilibrium problem is to find x € C such that

(1) O(z,y) + (W, y —x) + ¢(y) = p(z), VyeC.
The set of solutions of (1) is denoted by GM EP(0), that is
GMEP©)={z e C: O(z,y) + (Ya,y — ) + ¢(y) = ¢(z), Vye C}.

In particular, if ¥ = 0, the problem (1) is reduced into the mized equilibrium
problem [10] for finding x € C such that

(2) O(z,y) + p(y) > ¢(z), VyeC.

The set of solutions of (2) is denoted by M EP(O, ¢).
If ¢ = 0, the problem (1) is reduced into the generalized equilibrium
problem [29] for finding x € C such that

(3) Oz, y) + (Ya,y —x) 20, VyeC.
The set of solution (3) is denoted by GEP(©, V).
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70 CONVERGENCE THEOREM FOR GMEP AND BREGMAN MAPPING

If © =0, the problem (1) is reduced into the mized variational inequality
of Browder type |6] for finding z € C' such that

(4) (Vz,y — ) +¢(y) = p(z), Yyl
The set of solution of (4) is denoted by MV I(C, ¢, ).

If ¥ =0 and ¢ = 0, the problem (1) is reduced into the equilibrium
problem 2] for finding x € C such that

(5) O(z,y) >0, VyeC.

The set of solutions of (5) is denoted by EP(©). This problem contains
fixed point problems, includes as special cases numerous problems in physics,
optimization and economics. Some methods have been proposed to solve the
equilibrium problem, (see [12, 14]).

The above formulation (5) was shown in [2] to cover monotone inclu-
sion problems, saddle point problems, variational inequality problems, min-
imization problems, optimization problems, variational inequality problems,
vector equilibrium problems, Nash equilibria in noncooperative games.

Equilibrium problems which were introduced by Blum and Oettli [2] and
Noor and Oettli [3] in 1994 have had a great impact and influence in the
development of several branches of pure and applied sciences. It has been
shown that the equilibrium problem theory provides a novel and unified
treatment of a wide class of problems which arise in economics, finance,
image reconstruction, ecology, transportation, network, elasticity and opti-
mization.

In [26], Reich and Sabach proposed an algorithm for finding a common
fixed point of finitely many Bregman strongly nonexpansive mappings 7T; :
C — C(i=1,2,...,N) satisfying N\, F(T;) # () in a reflexive Banach space
FE as follows:

xg € FE, chosen arbitrarily,

v = Ti(zn+e)),

C, = {2€E:Ds(zy,) <D¢(z,xn+e,)}

Co = NG
no= {z€ E:(Vf(x0) = Vf(zn),2 — zn) <O},

Tpi1 = projéann (xo), ¥Yn >0,
and

rg € FE,
Ci = E,i=12,...,N,
yn = Tilva +ep),

' = {z€CL:Ds(z,y,) < Ds(z,2n + €),)},
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N i
Cny1 = Mit1Chgr,
Tni1 = Projc,.,(ro), ¥n >0,

where projé is the Bregman projection with respect to f from E onto a

closed and convex subset C' of E. They proved that the sequence {z,}
converges strongly to a common fixed point of {Tl}f\il
The authors of [18| introduced the following algorithm:

xy = x € C  chosen arbitrarily,

Zn = Res;{(a:n),

Yn = VI (BuVf(zn)+ (1= Bn)VI(Tn(2n)))
(6) Tny1 = V(@ Vf(zn) + (1 —an)V(Taulyn))),

where H is an equilibrium bifunction and 73, is a Bregman strongly nonex-
pansive mapping for any n € N. They proved the sequence (6) converges
strongly to the point projpr)nepm)®-

Also, in [13] the following algorithm was considered:

x1 = x €C  chosen arbitrarily,

Zn = Reséy(p(xn),

yo = ProfEV T (BaV f(an) + (1= Bu) V(T (20)))
(1) @ = profEV i (Vi (@) + (1 - an) V(T (yn)),

where ¢ : C' — R is a real-valued function, © : C'x C' — R is an equilibrium
bifunction and 7T is a Bregman strongly nonexpansive mapping. It was
prove that the sequence {z,} defined in (7) converges strongly to the point
PrOJ(nN | F(T;))nMEP(©)T-

In this paper, motivated by above algorithms, we present the following
iterative scheme:

xy = x €C  chosen arbitrarily,
Yn = Resg%w(wn),
(8) Tp+1 = Vf*(Oéan($n) + (1 - O‘n)vf(T(yn)))a

where ¢ : C' — R is a real-valued function, ¥ : C' — E* is a continuous
monotone mapping, © : C x C' — R is an equilibrium bifunction and T is
Bregman strongly nonexpansive mapping. We will prove that the sequence
{w,} defined in (8) converges strongly to the point projrrnaymep©,p,w)7-

2. PRELIMINARIES

Let f: E — (—o00,+00] be a proper, lower semi-continuous and convex
function. We denote by domf, the domain of f, that is the set {x € E :
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f(z) < +o0}. Let z € int(domf), the subdifferential of f at x is the convex
set defined by

Of () ={a" € E: f(x) + («",y — x) < f(y),Vy € E},
where the Fenchel conjugate of f is the function f* : E* — (—o0,+0o0]
defined by
f*(@*) = sup{(a*,2) — f(2) : @ € B},
For any « € int(domf), the right-hand derivative of f at z in the derivation
y € E is defined by
/ _fle+ty) — flz)
£ (@9) = lim =19,

The function f is called Gateaux differentiable at x if lims\ o w

exists for all y € E. In this case, f (z,y) coincides with V f(z), the value of
the gradient (Vf) of f at x. The function f is called Gateaux differentiable
if it is Gateaux differentiable for any = € int(domf) and f is called Fréchet
differentiable at x if this limit is attain uniformly for all y which satisfies
llyl| = 1. The function f is uniformly Fréchet differentiable on a subset C
of E if the limit is attained uniformly for any = € C and |ly|| = 1. It is
known that if f is Gateaux differentiable (resp. Fréchet differentiable) on
int(domf), then f is continuous and its Gateaux derivative V f is norm-to-
weak® continuous (resp. continuous) on int(domf) (see [5]).

Let f: E — (—o00,+00] be a Géateaux differentiable function. The func-
tion Dy : domf x int(domf) — [0, 400) defined as follows:

(9) Dy(z,y) := f(z) = f(y) = (V(y),z —y)
is called the Bregman distance with respect to f, [11].

The Legendre function f : E — (—o0,+0o0] is defined in [4]. It is well
known that in reflexive spaces, f is Legendre function if and only if it satisfies
the following conditions:

(L1) The interior of the domain of f, int(domf), is nonempty, f is Gateaux
differentiable on int(domf) and domf = int(domf);

(L2) The interior of the domain of f*, int(domf*), is nonempty, f* is
Géateaux differentiable on int(domf*) and domf* = int(domf*).

Since E is reflexive, we know that (9f)~! = 0f* (see [5]). This , with (L;)
and (Lz), imply the following equalities:
Vf=(Vf), ranVf=domVf* = int(domf*)
and
ranV f* = dom(V f) = int(domf),
where ranV f denotes the range of V f.
When the subdifferential of f is single-valued, it coincides with the gradi-

ent Of = Vf, [22|. By Bauschke et al [4] the conditions (L) and (Ls) also
yields that the function f and f* are strictly convex on the interior of their
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respective domains.

If E is a smooth and strictly convex Banach space, then an important and
interesting Legendre function is f(x) := %Hpr(l < p < 00). In this case the
gradient V f of f coincides with the generalized duality mapping of F, i.e.,
Vf=J,(1 <p< o0). Inparticular, Vf = I, the identity mapping in Hilbert
spaces. From now on we assume that the convex function f : F — (—o0, 0]

is Legendre.

Definition 2.1. Let f : E — (—o00,+00] be a convex and Géateaux dif-
ferentiable function. The Bregman projection of x € int(domf) onto the
nonempty, closed and convex subset C C domf is the necessary unique

vector projé(x) € C satisfying

Df(projé(x),x) =inf{D¢(y,x) : y € C}.
Remark 2.1. If F is a smooth and strictly convex Banach space and f(x) =
|z||? for all z € E, then we have that Vf(z) = 2Jx for all 2 € E, where
J is the normalized duality mapping from E in to 2F", and hence D #(z,y)
reduced to ¢(x,y) = ||z||* — 2(z, Jy) + ||y||?, for all z,y € E, which is the
Lyapunov function introduced by Alber [1] and Bregman projection Pé(:n)
reduces to the generalized projection II(z) which is defined by

o(Ile(z),x) = ggg o(y, ).

If £ = H, a Hilbert space, J is the identity mapping and hence Bregman
projection Pé(:z) reduced to the metric projection of H onto C, Po(z).

Definition 2.2. [9] Let f : E — (—o0,+0o0] be a convex and Gateaux
differentiable function. f is called:

(1) totally convex at z € int(domf) if its modulus of total convexity at
x, that is, the function vy : int(domf) x [0, +00) — [0, +00) defined
by

I/f(SL',t) = 1nf{Df(ya IL‘) :y € domf, Hy - :L'H = t}a
is positive whenever ¢t > 0;

(2) totally convex if it is totally convex at every point x € int(domf);

(3) totally convex on bounded sets if v¢(B, t) is positive for any nonempty
bounded subset B of E and t > 0, where the modulus of total con-

vexity of the function f on the set B is the function v¢ : int(dom f) x
[0, +00) — [0, +00) defined by

ve(B,t) = inf{vs(x,t) : x € BNdomf}.
The set levé (r)y={z € E: f(x) <r} for some r € R is called a sublevel
of f.
Definition 2.3. [9, 26] The function f : E — (—o0, +0o0] is called;
(1) cofinite if domf* = E*;
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(2) coercive [15] if the sublevel set of f is bounded; equivalently,
lim f(z) = +o0;
llz]|—=+o0

(3) strongly coercive if lim o0 % = +-00;
(4) sequentially consistent if for any two sequences {z,,} and {y,} in E

such that {z,} is bounded,

lim D¢(yn,xzn) =0= lim ||y, —z,| =0.
n—oo

n—oo

Lemma 2.1. [8] The function f is totally conver on bounded subsets if and
only if it is sequentially consistent.

Lemma 2.2. |26, Proposition 2.3| If f : E — (—o0,400] is Fréchet differ-
entiable and totally convex, then f is cofinite.

Lemma 2.3. [8]| Let f : E — (—00, +00] be a convex function whose domain
contains at least two points. Then the following statements hold:

(1) f is sequentially consistent if and only if it is totally convexr on
bounded sets;

(2) If f is lower semicontinuous, then f is sequentially consistent if and
only if it is uniformly convex on bounded sets;

(3) If f is uniformly strictly convex on bounded sets, then it is sequen-
tially consistent and the converse implication holds when f is lower
semicontinuous, Fréchet differentiable on its domain and Fréchet de-
rivative V f is uniformly continuous on bounded sets.

Lemma 2.4. [24, Proposition 2.1| Let f : E — R be uniformly Fréchet
differentiable and bounded on bounded subsets of E. Then V f is uniformly
continuous on bounded subsets of E from the strong topology of E to the
strong topology of E*.

Lemma 2.5. [26, Lemma 3.1] Let f : E — R be a Gdteauzx differentiable
and totally convex function. If xo € E and the sequence {Dg(xn,x0)} s
bounded, then the sequence {x,} is also bounded.

Let T : C — C be a nonlinear mapping. The fixed points set of T is
denoted by F(T), that is F(T) = {z € C : Tx = x}. A mapping T is said
to be nonexpansive if ||Tz — Ty|| < |z — y|| for all z,y € C. T is said to
be quasi-nonexpansive if F(T) # () and ||Tz — p|| < ||z — p||, for all z € C
and p € F(T). A point p € C is called an asymptotic fixed point of T' (see
[23, 28]) if C' contains a sequence {z,} which converges weakly to p such
that lim, 0 [|#n — T2p|| = 0. We denote by F(T) the set of asymptotic
fixed points of T

A mapping T : C — int(domf) with F(T') # 0 is called:

(1) quasi-Bregman nonexpansive [26] with respect to f if

D¢(p,Tx) < Df(p,x),Vx € C,p € F(T).
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(2) Bregman relatively nonexpansive [26] with respect to f if,
Dy(p,Tz) < Ds(p,x), Yz e C,pe F(T), and F(T)=F(T).
(3) Bregman strongly nonexpansive (see |7, 26]) with respect to f and
F(T) if,
D¢(p,Tx) < Df(p,x), VeeC,pe ﬁ(T)
and, if whenever {z,,} C C is bounded, p € F(T), and
lim (Dj(p, ) — Dy(p, T)) = 0,

Z—00

it follows that
lim D¢(zp,Tx,) = 0.
n—oo

(4) Bregman firmly nonexpansive (for short BFNE) with respect to f if,
for all z,y € C,

(Vf(Tz) = Vf(Ty), Tz —Ty) < (Vf(z) = Vf(y), Tz — Ty)
equivalently,
D¢(Tx,Ty)+ Dy(Ty,Tx) + Dy(Tx,x) + Df(Ty,y)
(10) < Dy(Tx,y)+ D¢(Ty, x).
The existence and approximation of Bregman firmly nonexpansive mappings
was studied in [23]. It is also known that if 7' is Bregman firmly nonexpan-
sive and f is Legendre function which is bounded, uniformly Fréchet dif-
ferentiable and totally convex on bounded subset of E, then F(T) = F(T)
and F(T) is closed and convex. It also follows that every Bregman firmly
nonexpansive mapping is Bregman strongly nonexpansive with respect to
F(T)=F(T).
Let C be a nonempty, closed and convex subset of K. Let f: E — R be
a Gateaux differentiable and totally convex function. Let x € F it is known
from [8] that z = projé(a;) if and only if
(Vf(@) =Vf(2),y—2) <0, VyeC.

We also know the following:
(11)  Dy(y,projt(x)) + Dy(projl(x),x) < Ds(y,x), Va € E,y € C.

Let f : E — R be a convex, Legendre and Gateaux differentiable function.
Following [1] and [11], we make use of the function Vy : E x E* — [0,00)
associated with f, which is defined by

Vi(x,2*) = f(x) — (2%, ) + f*(2¥), VeeE 2" eE"

Then V; is nonexpansive and Vy(z,2*) = Dy(x, V f*(2*)) for all z € E and
x* € E*. Moreover, by the subdifferential inequality,

(12) Vi(e,2™) + (y", VI (27) — z) < Vi(z, 2" +y7)
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for all z € E and z*,y* € E* [17]. In addition, if f : E — (—o0, 4]
is a proper lower semicontinuous function, then f* : E* — (—o0,+00] is a
proper weak® lower semicontinuous and convex function (see [19]). Hence,
V¢ is convex in the second variable. Thus, for all z € E,

N N
Dy (z, Vf* <Ztlvf(xl))) < th‘Df(Zanz’)a
i=1 i=1

where {z;}Y, C E and {t;}}Y, C (0,1) with sz\il t; = 1.

Lemma 2.6. [25] Let C be a nonempty, closed and convex subset of int(domf)
and T : C — C be a quasi-Bregman nonexpansive mappings with respect to
f. Then F(T) is closed and convez.

For solving the generalized mixed equilibrium problem, let us assume that
the bifunction © : C' x C' — R satisfies the following conditions:

(A1) O(z,z) =0 for all x € C

(A2) © is monotone, i.e., O(z,y) + O(y,z) <0 for any z,y € C,

(As) for each y € C,x — O(z,y) is upper-hemicontinuous, i.e., for each
xz,y,z € C,

limsupO(tz + (1 — t)z,y) < O(z,y);
t—0t
(A4) for each z € C,y — O(x,y) is convex and lower semicontinuous (see

[21]).

Definition 2.4. Let C' be a nonempty, closed and convex subsets of a real
reflexive Banach space and let ¢ be a lower semicontinuous and convex
functional from C to R and ¥ : C' — E* be a continuous monotone mapping.
Let ® : C x C — R be a bifunctional satisfying (A1)-(A4). The mized

resolvent of © is the operator Resg%q, . E —2¢

Resg%\p(x) = {2€C:0(z,y) +o(y) + (Yz,y — 2)
(13) HVf(z) = Vf(2),y —2) = ¢(2), VyeC}.

Lemma 2.7. Let f : E — (—o0,+00] be a coercive and Gateaux differen-
tiable function. Let C be a closed and convexr subset of E. Assume that
@ : C — R be a lower semicontinuous and convex functional, ¥ : C' — E*
be a continuous monotone mapping and the bifunctional © : C x C — R
satisfies conditions (A1 )-(A4), then dom(ReséMW) =FE.

Proof. Since f is a coercive function, the function h: £ x E — (—o0, +o0]
defined by

satisfies the following for all z* € E* and y € C

h
(@9 _
lz—yll—+oo ||z — ¥yl
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Then from [2, Theorem 1|, there exists € C such that

OT,y) + (Va,y — 7) + ¢(y) — ¢(z) + f(y) = f(T) = (2", y = 7) = 0,
for any y € C. So, we have
(14)  O(z,y) + (Yz,y — 2) + o(y) + f(y) — f(Z) — 2",y — Z) > ¢(2).

We know that inequality (14) holds for y = tz + (1 — t)y where § € C' and
€ (0,1). Therefore,

O, tz+(1—-t)y) + (Yo, tz+(1—-t)y—z)+ etz + (1 —-1)y)
+ftz+ (1 =1)y) — f(z) = @™tz + (1 =)y — T)
> ¢(7)

for all y € C. By convexity of ¢ we have

O, tz+(1—-t)y) + A—-t)(Tz,y—2)+ (1 —1t)p(y)
+f(tz+ (1 =1)y) - ()
—(z"tz+ (1 —t)y — T)
(15) > (1= t)p(z).
Since
flz+ (1 —-t)y) - f(z) <Vt + (1 -t)y),tx+ (1 - )y — T),
we have from (15) and (A4) that
t0(z,z) + (1 -1)0(z,5) + (1—t)(¥z, 5+ ¢(y) —
+HVftz+ (1 —-t)y),tz
—(z*tz+ (1 —t)y — )
for all y € C. From (A;) we have
(1-t)o(z,y) + (1—1t)(¥x,

Equivalently
(1-t)e(z,
("5 )

So, we have

O, y) + (Y2, —I) + () +(Vf(tz+ (1 -1)y), 5 —2) — (z",§ — T) = »(T),

for all y € C. Since f is Gateaux differentiable function, it follows that

V f is norm-to-weak™ continuous (see [22, Proposition 2.8]. Hence, letting
t — 171 we then get

O, 9) + (Yo, — 2) + o(§) + (VI(2),5 — 2) = (27,5 — T) > ().

y)+ (Y, y
1> (1t

— )+ o(y) +(VI(tz + (1 - 1)y),y — )
> (1 —=1t)p(Z).
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By taking z* = V f(z) we obtain z € C such that
O(5,9) + (We,5— 5) + ¢(5) + (V&) — VI(2),§ - 7) > ¢(3),
forally € C,ie., z € Resé,%\y(aj). So, dom(Resé’Wy) =F.
O

Lemma 2.8. Let f: E — (—o0,+00] be a Legendre function. Let C' be a
closed and convexr subset of E. If the bifunction © : C' x C' — R satisfies
conditions (A1)-(A4), then

(1) Resé’%\y is single-valued;

2) Resé%\y is a BFNE operator;

3) F (Resgw) — GMEP(O);

4) GMEP(O) is closed and convex;

5) Dy (p, Resh (@) + Dy (Resh g (@),) < Dys(p.2),
VpeF (Resg%Q zcE.

(
(
(
(

Proof. (1) Let 21,29 € Resé%\y(aj) then by definition of the resolvent we
have

O(21,22) + (Y, 21 — 22) + p(22) + (Vf(21) = V[f(2),22 — 21) > (21)

and

O(22,21) + (Y, 22 — 21) + @(21) + (Vf(22 — Vf(2),21 — 22) > p(22).
Adding these two inequalities, we obtain
O(z21,22) + O(22, 21) + (Y, 21 — 22) + (Y, 22 — 21) + p(21) + p(22)
H(Vf(2z2) = Vf(21),21 — 22)
> p(z1) + ¢(22).
So,
O(z1,22) + O(22,21) + (Vf(22) = Vf(z1),21 — 22) > 0.
By (A2), we have
(Vf(z2) = Vf(21),21 — 22) > 0.

Since f is Legendre then it is strictly convex. So, Vf is strictly monotone
and hence 21 = zo. It follows that Resé o0 is single-valued.

(2) Let z,y € E, we then have
@(Resé7w7\1,(x), Resé%\y(y)) + (Yx, Resé%\l,(y) - Resé7<p’\y(x)>
+o(Resh , 4(v)
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+(Vf(Res), , (x)) = Vf(z), Res, 4 (y)

—Resg%q,(w»
(16) > @(R68é7@,\1}($))

and

@(Resg%q,(y), Resé%q,(x)) + (Yx, Resg%q,(x) — Resg7¢,\p(y)>
+p(Rest g0/(2))
+<Vf(Resé,%q,(y) - V£), Resé,cp,\P(x)
“Rest) o))

(17) > p(Resb , 4/(4))-

Adding the inequalities (16) and (17), we have

@(Resé%\y(m), Resg%\y(y)) + @(Resév%q,(y), Resé%q,(x))

+(Vf(Resh 44 ()

=~V (@) + Vi) = V(Resb o), Resh 4 (y) = Resh, 4(2)) > 0.
By (Az2), we obtain

(V f(Resgw(a;)) v f(Resgw(y)), Resgw(x) - Resgw(y»
< (Vf(x) = V(y), Resh, , 4 (x) — Res}, 4 (1))

It means Resé o0 is BFNE operator.

(3)
x € F(Resé%\p) & o= Resé7¢7\y(az)
< O(z,y) + (Yz,y —z) + ¢(y)
HVf(2) = Vf(x),y—x)>p(x), Yyl
& O, y)+ (Ya,y —z) +9(y) > p(z), Vyel
& xe GMEP(O).

(4) Since Resg?%\p is a BFNE operator, it follows from [25, Lemma 1.3.1]
that F(Resé%\p) is a closed and convex subset of C. So, from (3) we have
GMEP(O) = F(Resé’%\p) is a closed and convex subset of C.

(5) Since Reséw‘l, is a BFNE operator, we have from (10) that for all
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x,y €kl

Dy (Resg%q, (x), Res{;’%q, (y)) + Df(Resé%\I,(y), Resg%‘y (x))
< Dy(Res), , 4(2),y) — D(Resh , y(2),2) + D(Resh , 4 (), @)
—Dy(Res}, , 4(v),9)-

Lety=pe€ F(Resé ».w): We then get

Dy(Resb , 4 (x),p) + Dy(p, Resh , 4 ()
< Dy(Res}, , 4 (x),p) — Dp(Resl, , (z),7) + Ds(p,x) — Ds(p,p)-

Hence,

Dy(p, Resg%q,(x)) + Df(ReséM\I,(x), z) < Df(p,x).
0

Lemma 2.9. [30] Assume that {x,} is a sequence of nonnegative real num-
bers such that

Tn+41 < (1 - OZn)fEn + an Vn > 1,
where {an} is a sequence in (0,1) and {B,} is a sequence such that
(1) 2021 an = +09;
(2) Hmsup,, o 5 <0 or 3277 |Ba| < +o0.

Then lim,, oo , = 0.

3. MAIN RESULT

Theorem 3.1. Let E be a real reflexive Banach space, C' be a nonempty,
closed and convex subset of E. Let f : E — R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally conver on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F(T) = F(T) and T is uniformly continuous.
Let © : C x C' — R satisfying conditions (A1)-(As) and F(T)NGMEP(©)

is nonempty and bounded. Let {x,} be a sequence generated by

r1 = x€C  chosen arbitrarily,
Yn = Resg%w(wn),
(18) Tny1 = VIH(anVf(zn) + (1 —an)VF(T(yn))),

where {a} C (0,1) satisfying lim, oo atp, = 0 and > 07 an = 00. Then
{xn} converges strongly to projp(rynamEeP©)T-

Proof. We note from Lemma 2.6 that F(T') is closed and convex. Let
p = projprynamer@ € F(T)NGMEP(©). Then p € F(T) and p €
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GMEP(O). By (18) and Lemma 2.8, we have D¢(p, yn) = D¢ (p, Resg%\y(xn)) <
D¢(p,xp), so
Dy(p,wni1) = Dyi(p, VI (@nVf(za) + (1 = an) V(T (yn))))
anDy(p,n) + (1 = ) Ds(p, T (yn))
an Dy (p; ) + (1 = an) D (p, yn)
anDy(p,n) + (1 = an) Df(p, 2n)
Df(p7 xn)
Hence {D¢(p,x,)} is bounded. Using [16, Proposition 5| we obtain that

{zn} is also bounded. Since {Df(p,x,)} is bounded, there exists M > 0
such that

f(p) - <Vf($n),p> + f*(vf(mn» = Vf(p, vf(xn)) = Df(p, wn) < M.

Therefore, {V f(x,)} is contained in the sublevel set levﬁ (M — f(p), where
Y = f*—(-,p). Since f is lower semicontinuous, f* is weak* lower semicon-
tinuous. Hence the function v is coercive by Moreau-Rockafellar Theorem
(see |27, Theorem 7A] and [20]). This shows that {V f(z,)} is bounded.
Since f is strongly coercive, f* is bounded on bounded sets (see [31, Lemma
3.6.1] and [4, Theorem 3.3]). Hence, V f* is also bounded on bounded subset
of E* (see [8, Proposition 1.1.11]). Since f is a Legendre function, it follows
that z,, = Vf*(Vf(zy)) is bounded for all n € N.

By (18) we have

T [V f(zir) = VAT @) = im0V F () — V()]
Since oy, — 0 when n — co we have
T [V (@) — VAT () = 0.

Since f is strongly coercive and uniformly convex on bounded subsets of
E, then f* is uniformly Fréchet differentiable on bounded subsets of E*.
Moreover, f* is bounded on bounded subsets. Since f is Legendre function
we have

(19) Jim (e~ T(a)| = i [[VF*Y f(@ni1) = VIV F(T ()] = 0.

On the other hand, since f is uniformly Fréchet differentiable on bounded
subsets of E, f is uniformly continuous on bounded subsets of E. It follows
that

VAN VAR VANRR VAN

T [1f @ns1) = ()| = 0.
From (11) and (18), we have

lim Dy(an,yn) = lim Dy(wn, Resh, yn)

n—o0

< lim [Dy(p, Resé’%qmn) = Dy(p, )]

n—o0
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< lim [Dg(p,zn) — D (p, xn)]

n—oo
= 0.
By Lemma 2.1, we obtain
(20) lim ||z, —yn| = 0.
n—oo
Now, we claim that
(21) lim |z, — Tz,| = 0.
n—oo

Since f is uniformly Fréchet differentiable on bounded subsets of FE, by

Lemma 2.4, V f is norm-to-norm uniformly continuous on bounded subsets
of E. So,

(22) i [V £ () = V)]l = 0.

Since f is uniformly Fréchet differentiable, it is also uniformly continuous,
we get

(23) lim || f(zn) = f(yn)] = 0.

n—oo

By Bregman distance we have

Dy(p,xn) = Ds(p, yn)
= f(p) = flan) = (VFf(2n),p = zn) = F(P) + f(yn) + (VI (Yn), P — yn)
= fyn) = f(zn) + (Vi (n). 0 = yn) = (Vf(@n),p — 2n)
= f(yn) = f(@n) + (Vf(Un)s 2n — Yn) — (Vf(yn) = Vf(@0),p — 20),
for each p € F(T). By (20)-(23), we obtain
(24) (Dy(p,an) = Dy(p,yn)) = 0.

By above equation, we have

Di(yn, xnt1) = Dy, xnt1) — Dy(psyn)

Dy (p, V(@ F(@a) + (1 — an)VF(T(@n)) — Dy(p,yn))
anDg(p,xn) + (1 = an) Dy (p, T (yn) — Dy (p, yn)
anDg(p,xn) + (1 = an) Dy (p,yn) — Dy(p, yn)

O‘n(Df(pa Tn) — Df(p: Yn))-

By Lemma 2.1, we have

lim
n—oo

IA A

nh_>nolo lyn — Tnsall = 0.
From above equation and (19), we can write

[yn =Tl < lyn = zntall + [[znt1r = Ty
(25) =0

when n — co. By applying the triangle inequality, we get
[2n = T (@)l < llzn = ynll + llyn = T(yn)ll + T (yn) — T(zn)|-
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By (20), (25) and since T is uniformly continuous, we have
nhj{.lo |2 — T'(xn)|| = 0.

As claimed in (21).
Since ||zn, — T'(zn, )| = 0 as k — oo, we have g € F(T).
From (23) we can write

lim ||Jyn, — Jz,| = 0.
n—oo

Here, we prove that ¢ € GMEP(O). For this reason, consider that y, =
Resé ».w(@n), so we have

OWn,y) + (Y2n, ¥ — Yn) +0(Y) + (Jyn — JT0n,y — yn) = p(yn), Yy e C.

From (As3), we have

OW,yn) < —O(yn,y)

< (Wan,y —yn) + ¢(y) — 0 (yn)
+<Jyn —Jrp,y — yn>, Yy € C.

Hence,

O, Yn;) < (Van,, ¥ —Yn;) +0(y) — ¢ WYn;) +{(JYn; — I, ¥ = Yn;), Yy € C.

Since y,, — ¢ and from the weak lower semicontinuity of ¢ and O(z,y) in
the second variable y, we also have

Oy, q) + (Yq,q —y) +¢(q) —p(y) <0, VyeC.

For t with 0 <t <1landy € C, let yy = ty+ (1 —t)g. Since y € C and
q € C we have y; € C and hence O(yt, q) + (Vq,q — y) + ¢(q) — p(y) < 0.
So, from the continuity of the equilibrium bifunction ©(x,y) in the second
variable y, we have

0 = Oy, y) + (Yaq,yr — yr) + p(ye) — ©(vr)

< Oy, y) + (1 = 1)O(yt,q) + 1 (g, y — ye) + (1 = t)(Vq,q — wr)
+to(y) + (1 —)elq) — p(w)
Oy, y) + (P, y — ye) + 0(y) — (y1)].

Therefore, ©(y:,y) + (Yq,y — y) + ©(y) — ¢(y:) > 0. Then, we have

O(g:9) +{¥q,y —q) + ¢(y) — (q) 20, Yy C.
Hence we have ¢ € GM EP(©). We showed that ¢ € F(T')NGMEP(O).

Since E is reflexive and {x,} is bounded, there exists a subsequence {z,, }
of {xy,} such that {z,, } = ¢ € C and

limsup(Vf(zn) = Vf(p), zn —p) = (Vf(zn) = VI(p),q — D)

n—o0

IN
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On the other hand, since ||, — Tz, || — 0 as k — oo, we have ¢ € F(T).
It follows from the definition of the Bregman projection that

(26)  limsup(V f(zn) = Vf(p),2n —p) = (Vf(2n) = Vf(p),q —p) < 0.

n—oo

From (12), we obtain

Di(p,wnt1) = Vi(p,anVf(2n) + (1= an) V(T (yn))
< Vi anVi(zn) + (1= an)V(T(yn))
—an(Vf(zn) = Vf(p)))
+Han(Vf(xn) = V() Tny1 —p)
Vi(p, anV f(p) + (1 = o)V (T (yn)
+an(Vf(zn) = V(D) Tnt1 —p)
anVi(p, Vf(p) + (L — an)Vi(p, V(T (yn)))
+an(Vf(zn) = V(D) Tnt1 —p)
= (L= an)Ds(p, T(yn) + an(V f(2n) = VI(p), Tnt1 — )
< (1- an)Df(p, Tn) 4+ an(V f(2) = Vf(p), Tny1 — p).

By Lemma 2.9 and (26), we can conclude that lim, o D¢(p, z,) = 0. There-
fore, by Lemma 2.1, x,, — p. This completes the proof. O

IN

If in Theorem 3.1, we consider © = 0, we have the following corollary.

Corollary 3.1. Let E be a real reflexive Banach space, C' be a nonempty,
closed and convex subset of E. Let f : E — R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally conver on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F(T) = F(T) and T is uniformly continuous.
Let F(T)NMVI(C,p,¥) is nonempty and bounded. Let {x,} be a sequence
generated by

xy = x€C  chosen arbitrarily,
UYn = Resg\p (zn),
Tn+1 = Vf*(Oéan(ﬂfn) + (1 - an)vf(T(yn)))a

where {ay,} C (0,1) satisfying limy, oo v, = 0 and > 07, = 00. Then
{wn} converges strongly to projprynmvi(c,e,w)-

If in Theorem 3.1, we consider ¥ = 0, we have the following corollary.

Corollary 3.2. Let E be a real reflexive Banach space, C' be a nonempty,
closed and convex subset of E. Let f : E — R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F(T) = F(T) and T is uniformly continuous.
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Let © : C' x C' — R satisfying conditions (A1)-(A4) and F(T)NMEP(©, ¢)
is nonempty and bounded. Let {x,} be a sequence generated by

x1y = x €C  chosen arbitrarily,
Yn = Resé#j(xn),
Tt = VI Vf(zn) + (1 —an)VF(T(yn))),

where {an} C (0,1) satisfying limy, o0, = 0 and > 02 | oy = 00. Then
{wn} converges strongly to projp(rynmEP©,0)T-

If in Theorem 3.1, we consider ¢ = 0, we have the following corollary.

Corollary 3.3. Let E be a real reflexive Banach space, C' be a nonempty,
closed and convex subset of E. Let f : E — R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally conver on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F(T) = F(T) and T is uniformly continuous.
Let © : C' x C — R satisfying conditions (A1)-(A4) and F(T)NGEP(O, V)
is nonempty and bounded. Let {x,} be a sequence generated by

x1 = x €C  chosen arbitrarily,
Yn = Resgq,(xn),
Tnt1 = VfHanVf(n)+ (1 —an)VI(T(yn))),
where {an,} C (0,1) satisfying limp, o0 ay = 0 and > 02 | oy = 00. Then
{wn} converges strongly to projp(rynaep©,v)T-

If in Theorem 3.1, we assume that F is a uniformly smooth and uniformly

convex Banach space and f(z) := %Hx”p (1 < p < ), we have that
Vf = Jp, where J, is the generalization duality mapping from E onto E*.
Thus, we get the following corollary.

Corollary 3.4. Let E be a uniformly smooth and uniformly convex Banach

space and f(z) = %H:EHP (1 <p<o0). Let C be a nonempty, closed and
convex subset of int(domf) and T be a finite family of Bregman strongly

nonexpansive mappings with respect to f such that F(T) = F(T) and T is
uniformly continuous. Let © : C x C' — R satisfying conditions (A1 )-(Ayg)
and F(T) NGMEP(O©) is nonempty and bounded. Let {x,} be a sequence
generated by

ry = x €C  chosen arbitrarily,
Yn = Resg%q,(xn),
Torr = Sy endp(n) + (1= an) Jp(T(yn))),

where {an,} C (0,1) satisfying limy, o0 a, = 0 and > 02 | oy = 00. Then
{wn} converges strongly to projprynamer©)T-
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