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Strong Convergence Theorem for Generalized
Mixed Equilibrium Problems and Bregman
Nonexpansive Mapping in Banach Spaces

Vahid Darvish

Abstract. In this paper, we study an iterative method for a common
fixed point of a Bregman strongly nonexpansive mapping in the frame
work of reflexive real Banach spaces. Moreover, we prove the strong
convergence theorem for finding common fixed points with the solutions
of a generalized mixed equilibrium problem.

1. Introduction

Let E be a real reflexive Banach space and C a nonempty, closed and
convex subset of E and E∗ be the dual space of E. Let Θ be a bifunction of
C×C into R, where R is the set of real numbers, Ψ : C → E∗ be a nonlinear
mapping and ϕ : C → R be a real valued function. The generalized mixed
equilibrium problem is to find x ∈ C such that

(1) Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C.

The set of solutions of (1) is denoted by GMEP (Θ), that is

GMEP (Θ) = {x ∈ C : Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C}.

In particular, if Ψ ≡ 0, the problem (1) is reduced into the mixed equilibrium
problem [10] for finding x ∈ C such that

(2) Θ(x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈ C.

The set of solutions of (2) is denoted by MEP (Θ, ϕ).
If ϕ ≡ 0, the problem (1) is reduced into the generalized equilibrium

problem [29] for finding x ∈ C such that

(3) Θ(x, y) + 〈Ψx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solution (3) is denoted by GEP (Θ,Ψ).
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If Θ ≡ 0, the problem (1) is reduced into the mixed variational inequality
of Browder type [6] for finding x ∈ C such that

(4) 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C.
The set of solution of (4) is denoted by MV I(C,ϕ,Ψ).

If Ψ ≡ 0 and ϕ ≡ 0, the problem (1) is reduced into the equilibrium
problem [2] for finding x ∈ C such that

(5) Θ(x, y) ≥ 0, ∀y ∈ C.
The set of solutions of (5) is denoted by EP (Θ). This problem contains
fixed point problems, includes as special cases numerous problems in physics,
optimization and economics. Some methods have been proposed to solve the
equilibrium problem, (see [12, 14]).

The above formulation (5) was shown in [2] to cover monotone inclu-
sion problems, saddle point problems, variational inequality problems, min-
imization problems, optimization problems, variational inequality problems,
vector equilibrium problems, Nash equilibria in noncooperative games.

Equilibrium problems which were introduced by Blum and Oettli [2] and
Noor and Oettli [3] in 1994 have had a great impact and influence in the
development of several branches of pure and applied sciences. It has been
shown that the equilibrium problem theory provides a novel and unified
treatment of a wide class of problems which arise in economics, finance,
image reconstruction, ecology, transportation, network, elasticity and opti-
mization.

In [26], Reich and Sabach proposed an algorithm for finding a common
fixed point of finitely many Bregman strongly nonexpansive mappings Ti :
C → C(i = 1, 2, . . . , N) satisfying ∩Ni=1F (Ti) 6= ∅ in a reflexive Banach space
E as follows:

x0 ∈ E, chosen arbitrarily,
yin = Ti(xn + ein),

Cin = {z ∈ E : Df (z, yin) ≤ Df (z, xn + ein)},
Cn = ∩Ni=1C

i
n,

Qin = {z ∈ E : 〈∇f(x0)−∇f(xn), z − xn〉 ≤ 0},
xn+1 = projfCn∩Qn

(x0), ∀n ≥ 0,

and

x0 ∈ E,

Ci0 = E, i = 1, 2, . . . , N,

yin = Ti(νn + ein),

Cin+1 = {z ∈ Cin : Df (z, yin) ≤ Df (z, xn + ein)},
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Cn+1 = ∩Ni=1C
i
n+1,

xn+1 = projCn+1(x0), ∀n ≥ 0,

where projfC is the Bregman projection with respect to f from E onto a
closed and convex subset C of E. They proved that the sequence {xn}
converges strongly to a common fixed point of {Ti}Ni=1.

The authors of [18] introduced the following algorithm:

x1 = x ∈ C chosen arbitrarily,
zn = ResfH(xn),

yn = ∇f∗(βn∇f(xn) + (1− βn)∇f(Tn(zn)))

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(Tn(yn))),(6)

where H is an equilibrium bifunction and Tn is a Bregman strongly nonex-
pansive mapping for any n ∈ N. They proved the sequence (6) converges
strongly to the point projF (T )∩EP (H)x.

Also, in [13] the following algorithm was considered:

x1 = x ∈ C chosen arbitrarily,
zn = ResfΘ,ϕ(xn),

yn = projfC∇f
∗(βn∇f(xn) + (1− βn)∇f(T (zn)))

xn+1 = projfC∇f
∗(αn∇f(xn) + (1− αn)∇f(T (yn))),(7)

where ϕ : C → R is a real-valued function, Θ : C×C → R is an equilibrium
bifunction and T is a Bregman strongly nonexpansive mapping. It was
prove that the sequence {xn} defined in (7) converges strongly to the point
proj(∩Ni=1F (Ti))∩MEP (Θ)x.

In this paper, motivated by above algorithms, we present the following
iterative scheme:

x1 = x ∈ C chosen arbitrarily,
yn = ResfΘ,ϕ,Ψ(xn),

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))),(8)

where ϕ : C → R is a real-valued function, Ψ : C → E∗ is a continuous
monotone mapping, Θ : C × C → R is an equilibrium bifunction and T is
Bregman strongly nonexpansive mapping. We will prove that the sequence
{xn} defined in (8) converges strongly to the point projF (T )∩GMEP (Θ,ϕ,Ψ)x.

2. Preliminaries

Let f : E → (−∞,+∞] be a proper, lower semi-continuous and convex
function. We denote by domf , the domain of f , that is the set {x ∈ E :
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f(x) < +∞}. Let x ∈ int(domf), the subdifferential of f at x is the convex
set defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈x∗, y − x〉 ≤ f(y),∀y ∈ E},
where the Fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞]
defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ E}.
For any x ∈ int(domf), the right-hand derivative of f at x in the derivation
y ∈ E is defined by

f
′
(x, y) := lim

t↘0

f(x+ ty)− f(x)

t
.

The function f is called Gâteaux differentiable at x if limt↘0
f(x+ty)−f(x)

t

exists for all y ∈ E. In this case, f ′(x, y) coincides with ∇f(x), the value of
the gradient (∇f) of f at x. The function f is called Gâteaux differentiable
if it is Gâteaux differentiable for any x ∈ int(domf) and f is called Fréchet
differentiable at x if this limit is attain uniformly for all y which satisfies
‖y‖ = 1. The function f is uniformly Fréchet differentiable on a subset C
of E if the limit is attained uniformly for any x ∈ C and ‖y‖ = 1. It is
known that if f is Gâteaux differentiable (resp. Fréchet differentiable) on
int(domf), then f is continuous and its Gâteaux derivative ∇f is norm-to-
weak∗ continuous (resp. continuous) on int(domf) (see [5]).

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The func-
tion Df : domf × int(domf)→ [0,+∞) defined as follows:

(9) Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉
is called the Bregman distance with respect to f , [11].

The Legendre function f : E → (−∞,+∞] is defined in [4]. It is well
known that in reflexive spaces, f is Legendre function if and only if it satisfies
the following conditions:

(L1) The interior of the domain of f , int(domf), is nonempty, f is Gâteaux
differentiable on int(domf) and domf = int(domf);

(L2) The interior of the domain of f∗, int(domf∗), is nonempty, f∗ is
Gâteaux differentiable on int(domf∗) and domf∗ = int(domf∗).
Since E is reflexive, we know that (∂f)−1 = ∂f∗ (see [5]). This , with (L1)
and (L2), imply the following equalities:

∇f = (∇f∗)−1, ran∇f = dom∇f∗ = int(domf∗)

and
ran∇f∗ = dom(∇f) = int(domf),

where ran∇f denotes the range of ∇f .
When the subdifferential of f is single-valued, it coincides with the gradi-

ent ∂f = ∇f , [22]. By Bauschke et al [4] the conditions (L1) and (L2) also
yields that the function f and f∗ are strictly convex on the interior of their
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respective domains.
If E is a smooth and strictly convex Banach space, then an important and
interesting Legendre function is f(x) := 1

p‖x‖
p(1 < p <∞). In this case the

gradient ∇f of f coincides with the generalized duality mapping of E, i.e.,
∇f = Jp(1 < p <∞). In particular,∇f = I, the identity mapping in Hilbert
spaces. From now on we assume that the convex function f : E → (−∞,∞]
is Legendre.

Definition 2.1. Let f : E → (−∞,+∞] be a convex and Gâteaux dif-
ferentiable function. The Bregman projection of x ∈ int(domf) onto the
nonempty, closed and convex subset C ⊂ domf is the necessary unique
vector projfC(x) ∈ C satisfying

Df (projfC(x), x) = inf{Df (y, x) : y ∈ C}.

Remark 2.1. If E is a smooth and strictly convex Banach space and f(x) =
‖x‖2 for all x ∈ E, then we have that ∇f(x) = 2Jx for all x ∈ E, where
J is the normalized duality mapping from E in to 2E

∗ , and hence Df (x, y)
reduced to φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, for all x, y ∈ E, which is the
Lyapunov function introduced by Alber [1] and Bregman projection P fC(x)
reduces to the generalized projection ΠC(x) which is defined by

φ(ΠC(x), x) = min
y∈C

φ(y, x).

If E = H, a Hilbert space, J is the identity mapping and hence Bregman
projection P fC(x) reduced to the metric projection of H onto C, PC(x).

Definition 2.2. [9] Let f : E → (−∞,+∞] be a convex and Gâteaux
differentiable function. f is called:

(1) totally convex at x ∈ int(domf) if its modulus of total convexity at
x, that is, the function νf : int(domf)× [0,+∞)→ [0,+∞) defined
by

νf (x, t) := inf{Df (y, x) : y ∈ domf, ‖y − x‖ = t},
is positive whenever t > 0;

(2) totally convex if it is totally convex at every point x ∈ int(domf);
(3) totally convex on bounded sets if νf (B, t) is positive for any nonempty

bounded subset B of E and t > 0, where the modulus of total con-
vexity of the function f on the set B is the function νf : int(domf)×
[0,+∞)→ [0,+∞) defined by

νf (B, t) := inf{νf (x, t) : x ∈ B ∩ domf}.

The set levf≤(r) = {x ∈ E : f(x) ≤ r} for some r ∈ R is called a sublevel
of f .

Definition 2.3. [9, 26] The function f : E → (−∞,+∞] is called;
(1) cofinite if domf∗ = E∗;
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(2) coercive [15] if the sublevel set of f is bounded; equivalently,

lim
‖x‖→+∞

f(x) = +∞;

(3) strongly coercive if lim‖x‖→+∞
f(x)
‖x‖ = +∞;

(4) sequentially consistent if for any two sequences {xn} and {yn} in E
such that {xn} is bounded,

lim
n→∞

Df (yn, xn) = 0⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.1. [8] The function f is totally convex on bounded subsets if and
only if it is sequentially consistent.

Lemma 2.2. [26, Proposition 2.3] If f : E → (−∞,+∞] is Fréchet differ-
entiable and totally convex, then f is cofinite.

Lemma 2.3. [8] Let f : E → (−∞,+∞] be a convex function whose domain
contains at least two points.Then the following statements hold:

(1) f is sequentially consistent if and only if it is totally convex on
bounded sets;

(2) If f is lower semicontinuous, then f is sequentially consistent if and
only if it is uniformly convex on bounded sets;

(3) If f is uniformly strictly convex on bounded sets, then it is sequen-
tially consistent and the converse implication holds when f is lower
semicontinuous, Fréchet differentiable on its domain and Fréchet de-
rivative ∇f is uniformly continuous on bounded sets.

Lemma 2.4. [24, Proposition 2.1] Let f : E → R be uniformly Fréchet
differentiable and bounded on bounded subsets of E. Then ∇f is uniformly
continuous on bounded subsets of E from the strong topology of E to the
strong topology of E∗.

Lemma 2.5. [26, Lemma 3.1] Let f : E → R be a Gâteaux differentiable
and totally convex function. If x0 ∈ E and the sequence {Df (xn, x0)} is
bounded, then the sequence {xn} is also bounded.

Let T : C → C be a nonlinear mapping. The fixed points set of T is
denoted by F (T ), that is F (T ) = {x ∈ C : Tx = x}. A mapping T is said
to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. T is said to
be quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx − p‖ ≤ ‖x − p‖, for all x ∈ C
and p ∈ F (T ). A point p ∈ C is called an asymptotic fixed point of T (see
[23, 28]) if C contains a sequence {xn} which converges weakly to p such
that limn→∞ ‖xn − Txn‖ = 0. We denote by F̂ (T ) the set of asymptotic
fixed points of T .

A mapping T : C → int(domf) with F (T ) 6= ∅ is called:
(1) quasi-Bregman nonexpansive [26] with respect to f if

Df (p, Tx) ≤ Df (p, x),∀x ∈ C, p ∈ F (T ).
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(2) Bregman relatively nonexpansive [26] with respect to f if,

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F (T ), and F̂ (T ) = F (T ).

(3) Bregman strongly nonexpansive (see [7, 26]) with respect to f and
F̂ (T ) if,

Df (p, Tx) ≤ Df (p, x), ∀x ∈ C, p ∈ F̂ (T )

and, if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ), and

lim
z→∞

(Df (p, xn)−Df (p, Txn)) = 0,

it follows that
lim
n→∞

Df (xn, Txn) = 0.

(4) Bregman firmly nonexpansive (for short BFNE) with respect to f if,
for all x, y ∈ C,

〈∇f(Tx)−∇f(Ty), Tx− Ty〉 ≤ 〈∇f(x)−∇f(y), Tx− Ty〉
equivalently,

Df (Tx, Ty) +Df (Ty, Tx) +Df (Tx, x) +Df (Ty, y)

≤ Df (Tx, y) +Df (Ty, x).(10)

The existence and approximation of Bregman firmly nonexpansive mappings
was studied in [23]. It is also known that if T is Bregman firmly nonexpan-
sive and f is Legendre function which is bounded, uniformly Fréchet dif-
ferentiable and totally convex on bounded subset of E, then F (T ) = F̂ (T )
and F (T ) is closed and convex. It also follows that every Bregman firmly
nonexpansive mapping is Bregman strongly nonexpansive with respect to
F (T ) = F̂ (T ).

Let C be a nonempty, closed and convex subset of E. Let f : E → R be
a Gâteaux differentiable and totally convex function. Let x ∈ E it is known
from [8] that z = projfC(x) if and only if

〈∇f(x)−∇f(z), y − z〉 ≤ 0, ∀y ∈ C.
We also know the following:

(11) Df (y, projfC(x)) +Df (projfC(x), x) ≤ Df (y, x), ∀x ∈ E, y ∈ C.
Let f : E → R be a convex, Legendre and Gâteaux differentiable function.

Following [1] and [11], we make use of the function Vf : E × E∗ → [0,∞)
associated with f , which is defined by

Vf (x, x∗) = f(x)− 〈x∗, x〉+ f∗(x∗), ∀x ∈ E, x∗ ∈ E∗.
Then Vf is nonexpansive and Vf (x, x∗) = Df (x,∇f∗(x∗)) for all x ∈ E and
x∗ ∈ E∗. Moreover, by the subdifferential inequality,

(12) Vf (x, x∗) + 〈y∗,∇f∗(x∗)− x〉 ≤ Vf (x, x∗ + y∗)
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for all x ∈ E and x∗, y∗ ∈ E∗ [17]. In addition, if f : E → (−∞,+∞]
is a proper lower semicontinuous function, then f∗ : E∗ → (−∞,+∞] is a
proper weak∗ lower semicontinuous and convex function (see [19]). Hence,
Vf is convex in the second variable. Thus, for all z ∈ E,

Df

(
z,∇f∗

(
N∑
i=1

ti∇f(xi)

))
≤

N∑
i=1

tiDf (z, xi),

where {xi}Ni=1 ⊂ E and {ti}Ni=1 ⊂ (0, 1) with
∑N

i=1 ti = 1.

Lemma 2.6. [25] Let C be a nonempty, closed and convex subset of int(domf)
and T : C → C be a quasi-Bregman nonexpansive mappings with respect to
f . Then F (T ) is closed and convex.

For solving the generalized mixed equilibrium problem, let us assume that
the bifunction Θ : C × C → R satisfies the following conditions:

(A1) Θ(x, x) = 0 for all x ∈ C;
(A2) Θ is monotone, i.e., Θ(x, y) + Θ(y, x) ≤ 0 for any x, y ∈ C;
(A3) for each y ∈ C, x 7→ Θ(x, y) is upper-hemicontinuous, i.e., for each

x, y, z ∈ C,
lim sup
t→0+

Θ(tz + (1− t)x, y) ≤ Θ(x, y);

(A4) for each x ∈ C, y 7→ Θ(x, y) is convex and lower semicontinuous (see
[21]).

Definition 2.4. Let C be a nonempty, closed and convex subsets of a real
reflexive Banach space and let ϕ be a lower semicontinuous and convex
functional from C to R and Ψ : C → E∗ be a continuous monotone mapping.
Let Θ : C × C → R be a bifunctional satisfying (A1)-(A4). The mixed
resolvent of Θ is the operator ResfΘ,ϕ,Ψ : E → 2C

ResfΘ,ϕ,Ψ(x) = {z ∈ C : Θ(z, y) + ϕ(y) + 〈Ψx, y − z〉
+〈∇f(z)−∇f(x), y − z〉 ≥ ϕ(z), ∀y ∈ C}.(13)

Lemma 2.7. Let f : E → (−∞,+∞] be a coercive and Gâteaux differen-
tiable function. Let C be a closed and convex subset of E. Assume that
ϕ : C → R be a lower semicontinuous and convex functional, Ψ : C → E∗

be a continuous monotone mapping and the bifunctional Θ : C × C → R
satisfies conditions (A1)-(A4), then dom(ResfΘ,ϕ,Ψ) = E.

Proof. Since f is a coercive function, the function h : E × E → (−∞,+∞]
defined by

h(x, y) = f(y)− f(x)− 〈x∗, y − x〉,
satisfies the following for all x∗ ∈ E∗ and y ∈ C

lim
‖x−y‖→+∞

h(x, y)

‖x− y‖
= +∞.
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Then from [2, Theorem 1], there exists x̄ ∈ C such that

Θ(x̄, y) + 〈Ψx, y − x̄〉+ ϕ(y)− ϕ(x̄) + f(y)− f(x̄)− 〈x∗, y − x̄〉 ≥ 0,

for any y ∈ C. So, we have

(14) Θ(x̄, y) + 〈Ψx, y − x̄〉+ ϕ(y) + f(y)− f(x̄)− 〈x∗, y − x̄〉 ≥ ϕ(x̄).

We know that inequality (14) holds for y = tx̄ + (1 − t)ȳ where ȳ ∈ C and
t ∈ (0, 1). Therefore,

Θ(x̄, tx̄+ (1− t)ȳ) + 〈Ψx, tx̄+ (1− t)ȳ − x̄〉+ ϕ(tx̄+ (1− t)ȳ)

+f(tx̄+ (1− t)ȳ)− f(x̄)− 〈x∗, tx̄+ (1− t)ȳ − x̄〉
≥ ϕ(x̄)

for all ȳ ∈ C. By convexity of ϕ we have

Θ(x̄, tx̄+ (1− t)ȳ) + (1− t)〈Ψx, ȳ − x̄〉+ (1− t)ϕ(ȳ)

+f(tx̄+ (1− t)ȳ)− f(x̄)

−〈x∗, tx̄+ (1− t)ȳ − x̄〉
≥ (1− t)ϕ(x̄).(15)

Since

f(tx̄+ (1− t)ȳ)− f(x̄) ≤ 〈∇f(tx̄+ (1− t)ȳ), tx̄+ (1− t)ȳ − x̄〉,

we have from (15) and (A4) that

tΘ(x̄, x̄) + (1− t)Θ(x̄, ȳ) + (1− t)〈Ψx, ȳ + ϕ(ȳ)− x̄〉
+〈∇f(tx̄+ (1− t)ȳ), tx̄+ (1− t)ȳ − x̄〉
−〈x∗, tx̄+ (1− t)ȳ − x̄〉 ≥ (1− t)ϕ(x̄)

for all ȳ ∈ C. From (A1) we have

(1− t)Θ(x̄, ȳ) + (1− t)〈Ψx, ȳ − x̄〉+ (1− t)ϕ(ȳ)

+〈∇f(tx̄+ (1− t)ȳ), (1− t)(ȳ − x̄)〉
−〈x∗, (1− t)(ȳ − x̄)〉 ≥ (1− t)ϕ(x̄).

Equivalently

(1− t)[Θ(x̄, ȳ) + 〈Ψx, ȳ − x̄〉+ ϕ(ȳ) + 〈∇f(tx̄+ (1− t)ȳ), ȳ − x̄〉
−〈x∗, ȳ − x̄〉] ≥ (1− t)ϕ(x̄).

So, we have

Θ(x̄, ȳ)+ 〈Ψx, ȳ− x̄〉+ϕ(ȳ)+ 〈∇f(tx̄+(1− t)ȳ), ȳ− x̄〉−〈x∗, ȳ− x̄〉 ≥ ϕ(x̄),

for all ȳ ∈ C. Since f is Gâteaux differentiable function, it follows that
∇f is norm-to-weak∗ continuous (see [22, Proposition 2.8]. Hence, letting
t→ 1−1 we then get

Θ(x̄, ȳ) + 〈Ψx, ȳ − x̄〉+ ϕ(ȳ) + 〈∇f(x̄), ȳ − x̄〉 − 〈x∗, ȳ − x̄〉 ≥ ϕ(x̄).
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By taking x∗ = ∇f(x) we obtain x̄ ∈ C such that

Θ(x̄, ȳ) + 〈Ψx, ȳ − x̄〉+ ϕ(ȳ) + 〈∇f(x̄)−∇f(x), ȳ − x̄〉 ≥ ϕ(x̄),

for all ȳ ∈ C, i.e., x̄ ∈ ResfΘ,ϕ,Ψ(x). So, dom(ResfΘ,ϕ,Ψ) = E.
�

Lemma 2.8. Let f : E → (−∞,+∞] be a Legendre function. Let C be a
closed and convex subset of E. If the bifunction Θ : C × C → R satisfies
conditions (A1)-(A4), then

(1) ResfΘ,ϕ,Ψ is single-valued;
(2) ResfΘ,ϕ,Ψ is a BFNE operator;

(3) F
(
ResfΘ,ϕ,Ψ

)
= GMEP (Θ);

(4) GMEP (Θ) is closed and convex;
(5) Df

(
p,ResfΘ,ϕ,Ψ(x)

)
+Df

(
ResfΘ,ϕ,Ψ(x), x

)
≤ Df (p, x),

∀p ∈ F
(
ResfΘ,ϕ,Ψ

)
, x ∈ E.

Proof. (1) Let z1, z2 ∈ ResfΘ,ϕ,Ψ(x) then by definition of the resolvent we
have

Θ(z1, z2) + 〈Ψx, z1 − z2〉+ ϕ(z2) + 〈∇f(z1)−∇f(x), z2 − z1〉 ≥ ϕ(z1)

and

Θ(z2, z1) + 〈Ψx, z2 − z1〉+ ϕ(z1) + 〈∇f(z2 −∇f(x), z1 − z2〉 ≥ ϕ(z2).

Adding these two inequalities, we obtain

Θ(z1, z2) + Θ(z2, z1) + 〈Ψx, z1 − z2〉+ 〈Ψx, z2 − z1〉+ ϕ(z1) + ϕ(z2)

+〈∇f(z2)−∇f(z1), z1 − z2〉
≥ ϕ(z1) + ϕ(z2).

So,
Θ(z1, z2) + Θ(z2, z1) + 〈∇f(z2)−∇f(z1), z1 − z2〉 ≥ 0.

By (A2), we have

〈∇f(z2)−∇f(z1), z1 − z2〉 ≥ 0.

Since f is Legendre then it is strictly convex. So, ∇f is strictly monotone
and hence z1 = z2. It follows that Res

f
Θ,ϕ,Ψ is single-valued.

(2) Let x, y ∈ E, we then have

Θ(ResfΘ,ϕ,Ψ(x), ResfΘ,ϕ,Ψ(y)) + 〈Ψx,ResfΘ,ϕ,Ψ(y)−ResfΘ,ϕ,Ψ(x)〉

+ϕ(ResfΘ,ϕ,Ψ(y))
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+〈∇f(ResfΘ,ϕ,Ψ(x))−∇f(x), ResfΘ,ϕ,Ψ(y)

−ResfΘ,ϕ,Ψ(x)〉

≥ ϕ(ResfΘ,ϕ,Ψ(x))(16)

and

Θ(ResfΘ,ϕ,Ψ(y), ResfΘ,ϕ,Ψ(x)) + 〈Ψx,ResfΘ,ϕ,Ψ(x)−ResfΘ,ϕ,Ψ(y)〉

+ϕ(ResfΘ,ϕ,Ψ(x))

+〈∇f(ResfΘ,ϕ,Ψ(y)−∇f(y), ResfΘ,ϕ,Ψ(x)

−ResfΘ,ϕ,Ψ(y)〉

≥ ϕ(ResfΘ,ϕ,Ψ(y)).(17)

Adding the inequalities (16) and (17), we have

Θ(ResfΘ,ϕ,Ψ(x), ResfΘ,ϕ,Ψ(y)) + Θ(ResfΘ,ϕ,Ψ(y), ResfΘ,ϕ,Ψ(x))

+〈∇f(ResfΘ,ϕ,Ψ(x))

−∇f(x) +∇f(y)−∇f(ResfΘ,ϕ,Ψ(y)), ResfΘ,ϕ,Ψ(y)−ResfΘ,ϕ,Ψ(x)〉 ≥ 0.

By (A2), we obtain

〈∇f(ResfΘ,ϕ,Ψ(x))−∇f(ResfΘ,ϕ,Ψ(y)), ResfΘ,ϕ,Ψ(x)−ResfΘ,ϕ,Ψ(y)〉

≤ 〈∇f(x)−∇f(y), ResfΘ,ϕ,Ψ(x)−ResfΘ,ϕ,Ψ(y)〉.

It means ResfΘ,ϕ,Ψ is BFNE operator.

(3)

x ∈ F (ResfΘ,ϕ,Ψ) ⇔ x = ResfΘ,ϕ,Ψ(x)

⇔ Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y)

+〈∇f(x)−∇f(x), y − x〉 ≥ ϕ(x), ∀y ∈ C
⇔ Θ(x, y) + 〈Ψx, y − x〉+ ϕ(y) ≥ ϕ(x), ∀y ∈ C
⇔ x ∈ GMEP (Θ).

(4) Since ResfΘ,ϕ,Ψ is a BFNE operator, it follows from [25, Lemma 1.3.1]
that F (ResfΘ,ϕ,Ψ) is a closed and convex subset of C. So, from (3) we have
GMEP (Θ) = F (ResfΘ,ϕ,Ψ) is a closed and convex subset of C.

(5) Since ResfΘ,ϕ,Ψ is a BFNE operator, we have from (10) that for all
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x, y ∈ E

Df (ResfΘ,ϕ,Ψ(x), ResfΘ,ϕ,Ψ(y)) +Df (ResfΘ,ϕ,Ψ(y), ResfΘ,ϕ,Ψ(x))

≤ Df (ResfΘ,ϕ,Ψ(x), y)−Df (ResfΘ,ϕ,Ψ(x), x) +Df (ResfΘ,ϕ,Ψ(y), x)

−Df (ResfΘ,ϕ,Ψ(y), y).

Let y = p ∈ F (ResfΘ,ϕ,Ψ), we then get

Df (ResfΘ,ϕ,Ψ(x), p) +Df (p,ResfΘ,ϕ,Ψ(x))

≤ Df (ResfΘ,ϕ,Ψ(x), p)−Df (ResfΘ,ϕ,Ψ(x), x) +Df (p, x)−Df (p, p).

Hence,

Df (p,ResfΘ,ϕ,Ψ(x)) +Df (ResfΘ,ϕ,Ψ(x), x) ≤ Df (p, x).

�

Lemma 2.9. [30] Assume that {xn} is a sequence of nonnegative real num-
bers such that

xn+1 ≤ (1− αn)xn + βn, ∀n ≥ 1,

where {αn} is a sequence in (0, 1) and {βn} is a sequence such that
(1)

∑∞
n=1 αn = +∞;

(2) lim supn→∞
βn
xn
≤ 0 or

∑∞
n=1 |βn| < +∞.

Then limn→∞ xn = 0.

3. Main result

Theorem 3.1. Let E be a real reflexive Banach space, C be a nonempty,
closed and convex subset of E. Let f : E → R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F (T ) = F̂ (T ) and T is uniformly continuous.
Let Θ : C ×C → R satisfying conditions (A1)-(A4) and F (T )∩GMEP (Θ)
is nonempty and bounded. Let {xn} be a sequence generated by

x1 = x ∈ C chosen arbitrarily,

yn = ResfΘ,ϕ,Ψ(xn),

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))),(18)

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Then
{xn} converges strongly to projF (T )∩GMEP (Θ)x.

Proof. We note from Lemma 2.6 that F (T ) is closed and convex. Let
p = projF (T )∩GMEP (Θ)x ∈ F (T ) ∩ GMEP (Θ). Then p ∈ F (T ) and p ∈
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GMEP (Θ). By (18) and Lemma 2.8, we haveDf (p, yn) = Df (p,ResfΘ,ϕ,Ψ(xn)) ≤
Df (p, xn), so

Df (p, xn+1) = Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))))

≤ αnDf (p, xn) + (1− αn)Df (p, T (yn))

≤ αnDf (p, xn) + (1− αn)Df (p, yn)

≤ αnDf (p, xn) + (1− αn)Df (p, xn)

≤ Df (p, xn).

Hence {Df (p, xn)} is bounded. Using [16, Proposition 5] we obtain that
{xn} is also bounded. Since {Df (p, xn)} is bounded, there exists M > 0
such that

f(p)− 〈∇f(xn), p〉+ f∗(∇f(xn)) = Vf (p,∇f(xn)) = Df (p, xn) ≤M.

Therefore, {∇f(xn)} is contained in the sublevel set levψ≤(M − f(p), where
ψ = f∗ − 〈·, p〉. Since f is lower semicontinuous, f∗ is weak∗ lower semicon-
tinuous. Hence the function ψ is coercive by Moreau-Rockafellar Theorem
(see [27, Theorem 7A] and [20]). This shows that {∇f(xn)} is bounded.
Since f is strongly coercive, f∗ is bounded on bounded sets (see [31, Lemma
3.6.1] and [4, Theorem 3.3]). Hence, ∇f∗ is also bounded on bounded subset
of E∗ (see [8, Proposition 1.1.11]). Since f is a Legendre function, it follows
that xn = ∇f∗(∇f(xn)) is bounded for all n ∈ N.
By (18) we have

lim
n→∞

‖∇f(xn+1)−∇f(T (yn))‖∗ = lim
n→∞

αn‖∇f(xn)−∇f(T (yn))‖∗.

Since αn → 0 when n→∞ we have

lim
n→∞

‖∇f(xn+1)−∇f(T (yn))‖∗ = 0.

Since f is strongly coercive and uniformly convex on bounded subsets of
E, then f∗ is uniformly Fréchet differentiable on bounded subsets of E∗.
Moreover, f∗ is bounded on bounded subsets. Since f is Legendre function
we have

(19) lim
n→∞

‖xn+1 − T (yn)‖ = lim
n→∞

‖∇f∗∇f(xn+1)−∇f∗∇f(T (yn))‖ = 0.

On the other hand, since f is uniformly Fréchet differentiable on bounded
subsets of E, f is uniformly continuous on bounded subsets of E. It follows
that

lim
n→∞

‖f(xn+1)− f(T (yn))‖ = 0.

From (11) and (18), we have

lim
n→∞

Df (xn, yn) = lim
n→∞

Df (xn, Res
f
Θ,ϕ,Ψxn)

≤ lim
n→∞

[Df (p,ResfΘ,ϕ,Ψxn)−Df (p, xn)]
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≤ lim
n→∞

[Df (p, xn)−Df (p, xn)]

= 0.

By Lemma 2.1, we obtain

(20) lim
n→∞

‖xn − yn‖ = 0.

Now, we claim that

(21) lim
n→∞

‖xn − Txn‖ = 0.

Since f is uniformly Fréchet differentiable on bounded subsets of E, by
Lemma 2.4, ∇f is norm-to-norm uniformly continuous on bounded subsets
of E. So,

(22) lim
n→∞

‖∇f(xn)−∇f(yn)‖∗ = 0.

Since f is uniformly Fréchet differentiable, it is also uniformly continuous,
we get

(23) lim
n→∞

‖f(xn)− f(yn)‖ = 0.

By Bregman distance we have

Df (p, xn)−Df (p, yn)

= f(p)− f(xn)− 〈∇f(xn), p− xn〉 − f(p) + f(yn) + 〈∇f(yn), p− yn〉
= f(yn)− f(xn) + 〈∇f(yn), p− yn〉 − 〈∇f(xn), p− xn〉
= f(yn)− f(xn) + 〈∇f(yn), xn − yn〉 − 〈∇f(yn)−∇f(xn), p− xn〉,

for each p ∈ F (T ). By (20)-(23), we obtain

(24) lim
n→∞

(Df (p, xn)−Df (p, yn)) = 0.

By above equation, we have

Df (yn, xn+1) = Df (p, xn+1)−Df (p, yn)

= Df (p,∇f∗(αn∇f(xn) + (1− αn)∇f(T (xn))−Df (p, yn))

≤ αnDf (p, xn) + (1− αn)Df (p, T (yn)−Df (p, yn)

≤ αnDf (p, xn) + (1− αn)Df (p, yn)−Df (p, yn)

= αn(Df (p, xn)−Df (p, yn)).

By Lemma 2.1, we have

lim
n→∞

‖yn − xn+1‖ = 0.

From above equation and (19), we can write

‖yn − T (yn)‖ ≤ ‖yn − xn+1‖+ ‖xn+1 − T (yn)‖
= 0(25)

when n→∞. By applying the triangle inequality, we get

‖xn − T (xn)‖ ≤ ‖xn − yn‖+ ‖yn − T (yn)‖+ ‖T (yn)− T (xn)‖.
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By (20), (25) and since T is uniformly continuous, we have

lim
n→∞

‖xn − T (xn)‖ = 0.

As claimed in (21).
Since ‖xnk

− T (xnk
)‖ → 0 as k →∞, we have q ∈ F (T ).

From (23) we can write

lim
n→∞

‖Jyn − Jxn‖ = 0.

Here, we prove that q ∈ GMEP (Θ). For this reason, consider that yn =

ResfΘ,ϕ,Ψ(xn), so we have

Θ(yn, y) + 〈Ψxn, y − yn〉+ ϕ(y) + 〈Jyn − Jxn, y − yn〉 ≥ ϕ(yn), ∀y ∈ C.

From (A2), we have

Θ(y, yn) ≤ −Θ(yn, y)

≤ 〈Ψxn, y − yn〉+ ϕ(y)− ϕ(yn)

+〈Jyn − Jxn, y − yn〉, ∀y ∈ C.

Hence,

Θ(y, yni) ≤ 〈Ψxni , y−yni〉+ϕ(y)−ϕ(yni) + 〈Jyni−Jxni , y−yni〉, ∀y ∈ C.

Since yni ⇀ q and from the weak lower semicontinuity of ϕ and Θ(x, y) in
the second variable y, we also have

Θ(y, q) + 〈Ψq, q − y〉+ ϕ(q)− ϕ(y) ≤ 0, ∀y ∈ C.

For t with 0 ≤ t ≤ 1 and y ∈ C, let yt = ty + (1 − t)q. Since y ∈ C and
q ∈ C we have yt ∈ C and hence Θ(yt, q) + 〈Ψq, q − yt〉+ ϕ(q)− ϕ(yt) ≤ 0.
So, from the continuity of the equilibrium bifunction Θ(x, y) in the second
variable y, we have

0 = Θ(yt, yt) + 〈Ψq, yt − yt〉+ ϕ(yt)− ϕ(yt)

≤ tΘ(yt, y) + (1− t)Θ(yt, q) + t〈Ψq, y − yt〉+ (1− t)〈Ψq, q − yt〉
+tϕ(y) + (1− t)ϕ(q)− ϕ(yt)

≤ t[Θ(yt, y) + 〈Ψq, y − yt〉+ ϕ(y)− ϕ(yt)].

Therefore, Θ(yt, y) + 〈Ψq, y − yt〉+ ϕ(y)− ϕ(yt) ≥ 0. Then, we have

Θ(q, y) + 〈Ψq, y − q〉+ ϕ(y)− ϕ(q) ≥ 0, ∀y ∈ C.

Hence we have q ∈ GMEP (Θ). We showed that q ∈ F (T ) ∩GMEP (Θ).
Since E is reflexive and {xn} is bounded, there exists a subsequence {xnk

}
of {xn} such that {xnk

}⇀ q ∈ C and

lim sup
n→∞

〈∇f(xn)−∇f(p), xn − p〉 = 〈∇f(xn)−∇f(p), q − p〉.
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On the other hand, since ‖xnk
− Txnk

‖ → 0 as k →∞, we have q ∈ F (T ).
It follows from the definition of the Bregman projection that

(26) lim sup
n→∞

〈∇f(xn)−∇f(p), xn − p〉 = 〈∇f(xn)−∇f(p), q − p〉 ≤ 0.

From (12), we obtain

Df (p, xn+1) = Vf (p, αn∇f(xn) + (1− αn)∇f(T (yn))

≤ Vf (p, αn∇f(xn) + (1− αn)∇f(T (yn))

−αn(∇f(xn)−∇f(p)))

+〈αn(∇f(xn)−∇f(p)), xn+1 − p〉
= Vf (p, αn∇f(p) + (1− αn)∇f(T (yn)

+αn〈∇f(xn)−∇f(p), xn+1 − p〉
≤ αnVf (p,∇f(p)) + (1− αn)Vf (p,∇f(T (yn)))

+αn〈∇f(xn)−∇f(p), xn+1 − p〉
= (1− αn)Df (p, T (yn) + αn〈∇f(xn)−∇f(p), xn+1 − p〉
≤ (1− αn)Df (p, xn) + αn〈∇f(xn)−∇f(p), xn+1 − p〉.

By Lemma 2.9 and (26), we can conclude that limn→∞Df (p, xn) = 0. There-
fore, by Lemma 2.1, xn → p. This completes the proof. �

If in Theorem 3.1, we consider Θ ≡ 0, we have the following corollary.

Corollary 3.1. Let E be a real reflexive Banach space, C be a nonempty,
closed and convex subset of E. Let f : E → R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F (T ) = F̂ (T ) and T is uniformly continuous.
Let F (T )∩MV I(C,ϕ,Ψ) is nonempty and bounded. Let {xn} be a sequence
generated by

x1 = x ∈ C chosen arbitrarily,

yn = Resfϕ,Ψ(xn),

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))),

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Then
{xn} converges strongly to projF (T )∩MV I(C,ϕ,Ψ)x.

If in Theorem 3.1, we consider Ψ ≡ 0, we have the following corollary.

Corollary 3.2. Let E be a real reflexive Banach space, C be a nonempty,
closed and convex subset of E. Let f : E → R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F (T ) = F̂ (T ) and T is uniformly continuous.
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Let Θ : C×C → R satisfying conditions (A1)-(A4) and F (T )∩MEP (Θ, ϕ)
is nonempty and bounded. Let {xn} be a sequence generated by

x1 = x ∈ C chosen arbitrarily,

yn = ResfΘ,ϕ(xn),

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))),

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Then
{xn} converges strongly to projF (T )∩MEP (Θ,ϕ)x.

If in Theorem 3.1, we consider ϕ ≡ 0, we have the following corollary.

Corollary 3.3. Let E be a real reflexive Banach space, C be a nonempty,
closed and convex subset of E. Let f : E → R be a coercive Legendre func-
tion which is bounded, uniformly Fréchet differentiable and totally convex on
bounded subsets of E. Let T be a Bregman strongly nonexpansive mappings
with respect to f such that F (T ) = F̂ (T ) and T is uniformly continuous.
Let Θ : C ×C → R satisfying conditions (A1)-(A4) and F (T )∩GEP (Θ,Ψ)
is nonempty and bounded. Let {xn} be a sequence generated by

x1 = x ∈ C chosen arbitrarily,

yn = ResfΘ,Ψ(xn),

xn+1 = ∇f∗(αn∇f(xn) + (1− αn)∇f(T (yn))),

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Then
{xn} converges strongly to projF (T )∩GEP (Θ,Ψ)x.

If in Theorem 3.1, we assume that E is a uniformly smooth and uniformly
convex Banach space and f(x) := 1

p‖x‖
p (1 < p < ∞), we have that

∇f = Jp, where Jp is the generalization duality mapping from E onto E∗.
Thus, we get the following corollary.

Corollary 3.4. Let E be a uniformly smooth and uniformly convex Banach
space and f(x) := 1

p‖x‖
p (1 < p < ∞). Let C be a nonempty, closed and

convex subset of int(domf) and T be a finite family of Bregman strongly
nonexpansive mappings with respect to f such that F (T ) = F̂ (T ) and T is
uniformly continuous. Let Θ : C × C → R satisfying conditions (A1)-(A4)
and F (T ) ∩ GMEP (Θ) is nonempty and bounded. Let {xn} be a sequence
generated by

x1 = x ∈ C chosen arbitrarily,

yn = ResfΘ,ϕ,Ψ(xn),

xn+1 = J−1
p (αnJp(xn) + (1− αn)Jp(T (yn))),

where {αn} ⊂ (0, 1) satisfying limn→∞ αn = 0 and
∑∞

n=1 αn = ∞. Then
{xn} converges strongly to projF (T )∩GMEP (Θ)x.
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